
代祥光,1986-04,博士(后),教授,硕导。
教育背景:
2018-10至2023-04,重庆大学,博士后。
2014-07至2018-07, 西南大学, 应用数学,博士。
2009-07至2012-07, 重庆大学, 计算机软件与理论, 硕士。
研究方向:
优化算法、神经网络、深度学习、神经辐射场、三维建模
科研情况简介:
主研国家自然科学基金项目2项,主持重庆市自然科学基金项目2项(重点项目1项)、重庆市教委科技项目3项(重点项目1项)和重庆市人社局项目2项;以第一作者或通信作者在人工智能和信息领域的著名期刊上发表学术论文20多篇,是多个国际期刊和学术会议的审稿人;指导学生竞赛获得省部级及以上奖项10余项,包括中国国际大学生创新大赛重庆市银奖等。
论文(选录):
[1] Lu Q , Dai X*(代祥光), Zhang W ,et al.Distributed Stochastic Learning for Composite Sharing Optimization in Consumer Electronics[J].IEEE Transactions on Consumer Electronics.DOI:10.1109/TCE.2024.3506915.
[2] Guo T, Shang F, Dai X(代祥光), Liu Q*. Blockchain-based Homomorphic Transaction Framework for Enhanced Consumer Security and Business Scalability[J]. IEEE Transactions on Consumer Electronics, 2024, DOI: 10.1109/TCE.2024.3473902.(中科院二区,IF:4.3)
[3]
[2]Dai X(代祥光), Wang J*, Zhang W. Balanced clustering based on collaborative neurodynamic optimization[J]. Knowledge-Based Systems, 2022, 250: 109026.
[2]Xiao Y, Zhang W, Dai X*(代祥光), et al. Robust supervised discrete hashing[J]. Neurocomputing, 2022, 483: 398-410.
[3]Dai X*(代祥光), Zhang K, Li J, et al. Robust semi-supervised non-negative matrix factorization for binary subspace learning[J]. Complex & Intelligent Systems, 2021: 1-8.
[4]Dai X(代祥光), Su X*, Zhang W, Xue F, Li H*. Robust Manhattan non-negative matrix factorization for image recovery and representation. Information Sciences.
[5]Dai X(代祥光), Li C*, He X, et al. Nonnegative matrix factorization algorithms based on the inertial projection neural network. Neural Computing and Applications, 2019, 31(8): 4215-4229.
[6]Dai X(代祥光), Chen G and Li C*. A discriminant graph nonnegative matrix factorization approach to computer vision. Neural Computing and Applications, 2019, 31(11): 7879-7889.
联系方式:daixiangguang@163.com